
A Semantic Model for Service Composition with
Coordination Time Delays

N. Kokash, B. Changizi and F. Arbab1 ? ??

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. The correct behavior of a service composition depends on the
appropriate coordination of its services. According to the idea of channel-
based coordination, services exchange messages though channels without
any knowledge about each other. The Reo coordination language aims at
building connectors out of basic channels to implement arbitrarily com-
plex interaction protocols. The activity within a Reo connector consists
of two types of communication, each of which incurs a delay: internal
coordination and data transfer. Semantic models have been proposed
for Reo that articulate data transfer delays, but none of them explicitly
considers coordination delays. More importantly, these models implicitly
assume that (1) internal coordination and data transfer activities take
place in two separate phases, and (2) data transfer delays do not affect the
coordination phase. This assumptions prevent maximal concurrency in
data exchange and distort the evaluation of end-to-end delays in service
composition models. In this paper, we introduce a novel compositional
automata-based semantic model for Reo that explicitly represents both
internal coordination and data transfer aspects in channel-based connec-
tors. Furthermore, we map the proposed model to the process algebra
mCRL2, which allows us to generate state spaces for connectors with time
delays and analyze them automatically.

1 Introduction

Provisioning of end-to-end client-perceived Quality of Service (QoS) in concur-
rent systems is a well-renown problem that has been attracting attention of
researchers and software engineers over the past few decades. The problem ac-
quired even more attention with the advent of service-oriented computing where
systems are composed out of loosely-coupled services of different vendors to real-
ize complex value-added business processes. The quality of what a service-based
system offers is derived from the quality of its constituent parts, the quality
of the so-called “glue code” that coordinates the execution of the individual
services, and the characteristics of the underlying infrastructure such as, e.g.,
the physical location of servers and the characteristics of the communication
networks connecting them.

? Corresponding author, email: Natallia.Kokash@cwi.nl
?? Supported by IST COMPAS FP7-ICT-2007-1 project, contract number 215175

2 N. Kokash, B. Changizi and F. Arbab

One of the ways to coordinate autonomous services is to use connectors.
Reo [1] is a model for coordination of software components or services wherein
complex connectors are constructed out of simple primitives called channels. By
composing basic channels, arbitrarily complex interaction protocols can be im-
plemented. A distinctive characteristic of Reo is the propagation of synchrony:
with the help of connectors composed of synchronous channels, one can define
transactional protocols where all participating services should be ready to pro-
vide or consume messages simultaneously. This facility is very useful as it enables
models that are both concise and compositional, but it also makes the problem
of describing the operational semantics of Reo a non-trivial task. The most basic
semantic model that currently exists for Reo relies on constraint automata [2].
In this model, states represent configurations of data stored in the buffers of Reo
networks, while transition labels are composed of (i) sets of channel ends where
dataflow is observed simultaneously, and (ii) data constraints necessary to trig-
ger such transitions. Constraint automata represent a theoretical basis for most
of the available validation and verification tools for Reo, which are integrated in
a framework known as the Eclipse Coordination Tools (ECT)1.

Several extensions for Reo and its initial semantics have been proposed to
capture the notions of timed, context-sensitive, probabilistic and stochastic be-
havior. However, none of these models accounts for the possible delays that the
channels need to transfer data. The existing approaches that aim at extending
Reo with QoS information [3,4] assume that delays in channels do not affect the
operational semantics of Reo connectors. Nevertheless, as we argue in this paper,
this assumption can limit the degree of concurrency in the presence of transac-
tions with different durations and lead to imprecise estimations of end-to-end
communication delays in service compositions.

To fix this problem, we introduce a more expressive semantic model for Reo,
called action constraint automata, which distinguished several actions performed
internally by each channel to manifest its behavior. By observing the start and
the end of a multiparty communication as well as the start and the end of actual
dataflow in each channel, we include more information into the model describing
the behavior of a circuit. This approach eventually helps us to compute the to-
tal delay in a circuit given the delays for each individual channel. In this paper,
we introduce the action constraint automata model, illustrate its application
to dataflow modeling in Reo, and discuss the tool support achieved by map-
ping action constraint automata into the process algebra mCRL2 as well as the
integration of the mCRL2 toolset within ECT.

The remainder of this paper is organized as follows. In Section 2, we explain
the basics of Reo. In Section 3, we give examples that motivate our work. In
Section 4, we introduce the action constraint automata-based semantic model
for Reo. In Section 5, we use this new automata to give semantics to our mo-
tivating examples. In Section 6, we discuss the translation of this model to the
process algebra mCRL2, which enables the application of the mCRL2 toolset for

1 http://reo.project.cwi.nl/

A Semantic Model for Service Composition with Coordination Time Delays 3

the verification of Reo circuits. Finally, in Section 7, we conclude the paper and
outline our future work.

2 Background

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [1]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes imple-
ment a fixed routing policy. Channels in Reo are entities that have exactly two
ends, also referred to as ports, which can be either source or sink ends. Source
ends accept data into, and sink ends dispense data out of their channel. Although
channels can be defined by users, a set of basic Reo channels with predefined
behavior suffices to implement rather complex coordination protocols. Among
these channels are (i) the Sync channel, which is a directed channel that accepts
a data item through its source end if it can instantly dispense it through its sink
end; (ii) the LossySync channel, which always accepts a data item through its
source end and tries to instantly dispense it through the sink end. If this is not
possible, the data item is lost; (iii) the SyncDrain channel, which is a channel
with two source ends that accept data simultaneously and loses them subse-
quently; (iv) the AsyncDrain channel, which accepts data items only through one
of its two source channel ends at a moment in time and loses it; and (v) the
FIFO channel, which is an asynchronous channel with a buffer of capacity one.
Additionally, there are channels for data manipulation. For instance, the Filter
channel always accepts a data item at its source end and synchronously passes or
loses it depending on whether or not the data item matches a certain predefined
pattern or data constraint. Finally, the Transform channel applies a user-defined
function to the data item received at its source end and synchronously yields
the result at its sink end.

Channels can be joined together using nodes. A node can be a source, a sink or
a mixed node, depending on whether all of its coinciding channel ends are source
ends, sink ends or a combination of both. Source and sink nodes together form
the boundary nodes of a connector, allowing interaction with its environment.
Source nodes act as synchronous replicators, and sink nodes as non-deterministic
mergers. A mixed node combines these two behaviors by atomically consuming
a data item from one of its sink ends at the time and replicating it to all of its
source ends.

The basic set of Reo channels can be extended to enable modeling of specific
features of service communication. Apart from functional aspects, channels can
differ at the level of their non-functional characteristics. In quantitative Reo [3],
channels are characterized by a set of associated QoS parameters such as data
transfer delays or cost.

In this paper, we consider Reo channels in presence of internal coordination
and data transfer delays. Roughly, by internal coordination delay we mean the
time that it takes a channel to decide whether or not it can accept to satisfy
the I/O request at its ends. By data transfer delay we mean the time needed

4 N. Kokash, B. Changizi and F. Arbab

to deliver a data item accepted by the source end of a channel to its sink end
for the Sync channels, from the channel source end to its buffer and from the
buffer to its sink end for the FIFO channels, or accept and destroy a data item
for SyncDrain, AsyncDrain and LossySync channels.

An informal description of Reo given above is rather incomplete and ambigu-
ous. The semantics of any Reo connector can be understood only in terms of a
specific semantic model and its appropriate translation into that model.

The most basic model expressing the semantics of Reo formally is constraint
automata [2]. Transitions in a constraint automaton are labeled with sets of
ports that fire synchronously, as well as with data constraints on these ports.
The constraint automata-based semantics for Reo is compositional, meaning that
the behavior of a complex Reo circuit can be obtained from the semantics of its
constituent parts using the product operator. Furthermore, the hiding operator
can be used to abstract from unnecessary details such as dataflow on the internal
ports of a connector.

Definition 1 (Constraint Automaton (CA)). A constraint automaton A =
(S,N ,→, s0) consists of a set of states S, a set of port names N , a transition
relation → ⊆ S × 2N ×DC × S, where DC is the set of data constraints over a
finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈→ . Table 1 shows our graphical notation

for the basic Reo channels and nodes together with their constraint automata
semantics. The behavior of any Reo circuit can be obtained by computing the
product of these automata which can be defined using the notion of a port
synchronization function [5].

Definition 2. Let A1 = (S1,N1,→1, s
1
0), A2 = (S2,N2,→2, s

2
0) be two con-

straint automata with disjoint sets of port names N1 and N2, respectively. A port
synchronization function γ : N → N1 × N2 is defined as γ(n) = (γ1(n), γ2(n))
through the pair of injective functions γ1 : N → N1 and γ2 : N → N2 that map
port names from a new set N into port names from the sets N1 and N2.

In the above definition, “new set” means N ∩ (N1 ∪ N2) = ∅. Observe that
the disjointness of N1 and N2 and the injectivity of the total functions γ1 and
γ2 confine the cardinality of N such that 0 ≤ |N | ≤ min(|N1|, |N2|). The ex-
act definition of γ1 or γ2, then, uniquely defines N . Intuitively, γ(n) = (x, y)
represents a renaming of x ∈ N1 and y ∈ N2 to the same common element
n ∈ N . In the context of the port synchronization function γ, we write N ′1 for
N1\γ1[N] and N ′2 for N2\γ2[N]. If, for subsets N1 ⊆ N1, N2 ⊆ N2, it holds that
γ−11 [N1] = γ−12 [N2] we write

N1 |γ N2 = (N1 ∩N ′1) ∪ γ−11 [N1] ∪ (N2 ∩N ′2) . (1)

This means that N1 |γN2 is the union N1∪N2 with the parts of N1 and N2 that
are identified via γ1 and γ2 replaced by the shared names γ−11 [N1] = γ−12 [N2].

Also, for a constraint g, we write γ(g) for the formula obtained by replacing
the port names in γ1[N] ⊆ N1 and γ2[N] ⊆ N2 by the corresponding name in N .

A Semantic Model for Service Composition with Coordination Time Delays 5

Table 1. Graphical notation and semantics for channels and nodes

Primitive Notation Constraint automaton

Sync A B {A,B} dA = dB

LossySync A B {A,B} dA = dB{A}

SyncDrain A B {A,B}

AsyncDrain A B {A}{B}

FIFO A B

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

Filter A B
{A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA)

Transform A B
{A,B} dB = f(dA)

Merger C
A

B {A,C} dA = dC {B,C} dB = dC

Replicator A
B

C
{A,B,C} dA = dB = dC

Definition 3. For two constraint automata A1 = (S1,N1,→1, s
1
0) and A2 =

(S2,N2,→2, s
2
0) and the port synchronization function γ : N → N1 × N2 with

γ1 : N → N1 and γ2 : N → N2, the constraint automaton A1./γA2, called the γ-
synchronous product of A1 and A2, is given by A1./γA2 = (S1×S2,N ′,→, 〈s10, s20〉)
where N ′ = N ′1 |γN ′2 and the transition relation→ is determined by the following
rules:

s1
N1,g1−→1 t1 N1 ⊆ N ′1
〈s1, s2〉

N1,g1−→ 〈t1, s2〉

s2
N2,g2−→1 t2 N2 ⊆ N ′2
〈s1, s2〉

N2,g2−→ 〈s1, t2〉
(2)

and

s1
N1,g1−→1 t1 s2

N2,g2−→1 t2 γ−11 (N1) = γ−12 (N2)

〈s1, s2〉
N1|γN2,γ(g1∧g2)−→ 〈t1, t2〉

(3)

In the above setting, for a port n ∈ N , the idea is that the ports x = γ1(n) ∈ N1

and y = γ2(n) ∈ N2 synchronize. Thus, either x and y both have flow or x
and y both have no flow, expressed as n having flow or no flow, respectively. The
resulting automaton, the so-called synchronized product automaton A1 ./γ A2,
follows the flow of A1 and A2, based on the first two rules for the transition
relation, but requires the flow on its ports in N to be agreed upon by both A1

and A2.
Constraint automata in their basic form are not expressive enough to capture

all interesting behavior in Reo. In particular, they cannot express the behavior
of so-called context dependent channels. A basic example of such a channel is a

6 N. Kokash, B. Changizi and F. Arbab

LossySync channel that loses a data item only if the environment or subsequent
channels are not ready to consume it. Numerous models have been proposed
to overcome this and other problems. However, due to space limits we cannot
provide their detailed discussion in this paper.

The problem of expressing the behavior of Reo circuits is orthogonal to the
problem of estimating the end-to-end quality of the communication protocol
that they implement. The existing semantic models, most notably, constraint
automata, have been extended with the information to capture the QoS char-
acteristics of the channels and their composition metrics [3,4]. However, these
extensions assume that the QoS characteristics do not affect the behavior of a
circuit and simply assign QoS labels to the transitions of the basic automata
models. In the next section, we argue that data transfer delays are important
for circuit behavior and accommodating them properly requires an appropriate
formal model.

3 Motivation

As mentioned before, currently variants of constraint automata extended with
labels representing QoS characteristics are used to give formal semantics to QoS-
aware Reo. These automata are defined with the help of Q-algebra introduced
initially by Chothia and Kleijn [6]. A Q-algebra is an algebraic structure R =
(C,⊕,⊗, ||,0,1) where C is the domain of R and represents a set of QoS values.
The operation ⊕ induces a partial order on the domain of R and is used to
define a preferred value of a QoS dimension, ⊗ is an operator for the sequential
channel composition, while || is an operator for the parallel composition. For
example, the Q-algebra corresponding to the circuit execution time is defined
as follows: (R≥∪{∞},min,+,max,∞, 0). Taking into account this definition, a
Quantitative CA (QCA) [3] is an extended CA A = (S, S0,N , E,R) where the
transition relation E is a finite subset of ∪N∈NS × {N} ×DC(N)×C × S and
R = (C,⊕,⊗, ||, 0, 1) is a labeled Q-algebra with domain C.

QCA were introduced to enable the estimation of QoS of compound circuits
given the QoS parameters of their constituent channels. However, as our example
shown in Figure 1(a) illustrates, this model does not allow us to precisely com-
pute the data transfer delays in synchronous regions. According to the definition
of the QCA and Q-algebra for the execution time, the delay for the barrier syn-
chronization connector equals max(t1, t2, t3, t4, t5) while the real data transfer
time cannot be smaller than the sum of the delays of the two pairs of Sync chan-
nels composed sequentially. Assuming that the whole transaction does not finish
before the SyncDrain channel destroys the data consumed through its source
ports, we conclude that the delay equals max(t1 +max(t2, t3), t4 +max(t3, t5)).

As shown in [4], data transfer delays in Reo circuits can be computed given
the information about its topology and the presumed dataflow semantics. How-
ever, currently there are no automata-based semantic models for Reo that sup-
ports such a computation in the compositional manner.

A Semantic Model for Service Composition with Coordination Time Delays 7

A C E

B D F

t1 t2

t3
t4 t5

{A,B,C,D,E, F}
dA = dC = dE ∧ dB = dD = dF

max(t1, t2, t3, t4, t5)

(a) Barrier synchronization

A

B

C

t1

t2

t3

{A,B}
dA = dB

t1

{C} dC = d t2

{A,B,C} dC = d ∧ dA = dB

max(t1, t2)

{B} dB = d t3

{A,B}
dA = dB

t1

(b) Delay-merge circuit

Fig. 1. Motivating examples

Another drawback of the constraint automata semantics for Reo is that it
forces the synchronization of independent concurrent transactions with differ-
ent durations. This problem arises from the fact that only one transition on
constraint automaton can be enabled at the same time. Assuming that data
transfer through a synchronous region of a circuit is not instantaneous as in the
basic Reo model, dataflow on some other parts of the circuit can be initiated
during this time. For example, the constraint automaton for the circuit shown in
Figure 1(b) implies that while the FIFO channel accepts data through the port
C, no other transition can be triggered. Imagine that the delay t2 is much bigger
than t1. This means that the circuit will not transfer data through the channel
Sync(A,B) until the port C finishes to accept data. However, the circuit should
allow data transfer through the Sync channel at any time when the port B is not
occupied. As this example illustrates, (Q)CA do not show all possible behaviors
of Reo with data transfer delays.

4 Action Constraint Automata

In this section, we introduce a new model, called action constraint automata, that
provides a valid semantic model for Reo coordination networks in the presence of
time delays This model is essentially a labeled transition system (LTS) with data
and synchronization constraints. However, in contrast to constraint automata in
their classic form, we distinguish several kinds of actions which are triggered
on channel ports to signal the state changes of the channel. Formally, an action
constraint automaton is defined as follows:

Definition 4 (Action Constraint Automaton (ACA)). An action con-
straint automaton A = (S,N ,→, s0) consists of a set of states S, a set of action
names N derived from a set of port names M and a set of admissible action
types T , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

8 N. Kokash, B. Changizi and F. Arbab

We introduce an injective function act :M×T → N to define action names for
each pair of a port name and an action type observed on the port. For example,
the function act(m,α) = α •m |m ∈ M, α ∈ T , where • is a standard lexical
concatenation operator, can be used to obtain a set of unique action names given
sets of distinctive Reo port names and types of observable actions.

Analogously to the constraint automata, we define the action synchronization
function γ : N− > N1xN2 through a pair of injective functions γ1 : N → N1,
γ2 : N → N2 from a new set of action names N into N1 and N2. Given such
function, we can define the product operator for ACA.

Definition 5 (Product of Action Constraint Automata). For two action
constraint automata A1 = (S1,N1,→1, s

1
0) and A2 = (S2,N2,→2, s

2
0) and the

action synchronization function γ : N → N1 × N2 with γ1 : N → N1 and γ2 :
N → N2, the action constraint automaton A1./γA2, called the γ-synchronization
product of A1 and A2, is given by A1 ./γ A2 = (S1 × S2,N ′1 |γ N ′2,→, 〈s10, s20〉)
where the transition relation → is determined by the following rules:

s1
N1,g1−→1 t1 N1 ⊆ N ′1
〈s1, s2〉

N1,g1−→ 〈t1, s2〉

s2
N2,g2−→1 t2 N2 ⊆ N ′2
〈s1, s2〉

N2,g2−→ 〈s1, t2〉
(4)

and

s1
N1,g1−→1 t1 s2

N2,g2−→1 t2 γ−11 (N1) = γ−12 (N2)

〈s1, s2〉
N1|γN2,γ(g1∧g2)−→ 〈t1, t2〉

(5)

Transitions where the set of actions N is non-empty are called visible, while
transitions with the empty action-set are called hidden. In a hidden transition,
none of the actions is visible and the data constraints appear as unknown from
outside. We denote hidden transitions by the label τ . Such transitions can be wit-
nessed only by the change of a state in an automaton. Taking this into account,
the hiding operator on ACA is defined as follows:

Definition 6 (Action hiding). The action hiding operator takes as input an
ACA A = (S,N ,→, s0) and a non-empty set of actions K ⊆ N . The result is
an ACA hide(A,K) = (S,N\K,→, s0) where

– q
N ′,g′−→K p iff there exists a transition q

N,g−→ p such that N\K 6= ∅ and g′ =∨
δ∈DA(K) g[dA/δ.A|A ∈ K], where g[dA/δ.A|A ∈ K] denotes the syntactic

replacement of all occurrences of dA in g for A ∈ K with δ.A.

– q
τ−→K p iff there exists a transition q

N,g−→K p such that N\K = ∅.

A port hiding can be achieved by hiding of all actions observed on this port. In
turn, a node hiding is the result of the hiding of all ports coincident on the node.

Note that constraint automata represent a subclass of action constraint au-
tomata with only one action observed on each port. This action represents the
fact that the data flow through this port. The synchronization function used in
the definition of constrain automata implies a renaming of joint channel/node
ports while here it is used for renaming of actions that are observed simultane-
ously.

A Semantic Model for Service Composition with Coordination Time Delays 9

A B A B A B A B

{bA,bB}

{uA,uB}

{bA,bB}

{uA,uB}

{bA}

{uA}

{bA,bB}

{uA,uB}

{bB}

{uB}

{bA}

{uA}

A B
C

A

B
A

B

C

{bA} {uA} {bB}

{uB}

{bA,bC}

{uA,uC}

{bB,bC}

{uB,uC}

{bA,bB,bC}

{uA,uB,uC}

Fig. 2. Semantics of channels and nodes with port blocking

5 Dataflow Modeling

In this section, we introduce an ACA-based model for representing the semantics
of Reo with data transfer delays.

Since some time is required by a channel for its internal coordination and to
transfer data, it may happen that the channel is still busy while other requests
arrive at the source ports of the circuit. There is no reason why the channels that
are not busy at the moment should not process the arrived requests. However,
as our motivating examples have shown, CA do not allow such behavior. To
provide a more expressive model for Reo that fixes the aforementioned problem,
we consider two actions, namely, a ‘block’ action and its dual an ‘unblock’ action
which are used to establish port communication within a single transaction and
release channel ports involved in such a transaction, respectively.

Table 5 shows the semantics of the basic Reo channels with presumable data
transfer delays in terms of ACA for the set of action types T1 = {b, u}, where
b stands for the ‘block’ and u stands for the ‘unblock’ actions. Since our focus
is on synchronization constraints, we omit the data constraints in this figure
to simplify the presentation. In their initial states, channels do not accept or
dispense data. To show that the Sync channel with the source end A and the
sink end B is ready to accept and dispense data, ‘block’ actions bA and bB
occur simultaneously. After the data transfer is finished, the channel returns
to its initial state when both ports are released and ‘unblock’ actions uA and
uB are observed. For the LossySync channel the behavior is similar with the
exception that the data can be lost after entering the channel. In this case, only
the channel source port A is involved in the communication. For the SyncDrain
channel we require that ports are blocked and unblocked simultaneously, while
for the AsyncDrain only one of the source ends A or B can be involved in the
communication at each particular moment in time. Finally, for the empty FIFO
channel, first the data is stored in the buffer through the source port A, then
the buffer is emptied through the sink port B.

Figure 3 shows the semantics of the delay-merge circuit and the barrier syn-
chronization of Figure 1 obtained using the product and hiding operators on the

10 N. Kokash, B. Changizi and F. Arbab

{bC} {uC}

{bC} {uC}

{bA, bB} {bA, bB} {bA, bB}{uA, uB} {uA, uB} {uA, uB}
{bA, bB, bC} {bA, bB, uC}

{uA, uB, bC} {uA, uB, uC}

{bB}{uB}

(a) Delay-merge circuit

{bA,bB,bC,bD,bE,bF}

{uA,uB,uC,uD,uE,uF}

(b) Barrier synchronization

Fig. 3. Semantics of the delay-merge circuit with port blocking

A D′′

C

E′′ B

D′

E′

(a) Delay-merge circuit

A H ′′ H ′ C G′ G′′ E

M ′
M ′′

N ′′
N ′

B J ′′ J ′ D K′ K′′ F

(b) Barrier synchronization

Fig. 4. Motivating examples: decomposed circuits

ACA with the set of action types T1. Since in our definitions of CA and ACA we
require all port names to be different, we apply these operators to the channels
and nodes in the decomposed versions of these circuits shown in Figure 4. Ob-
serve that after blocking the port C in the delay-merge circuit, the system can
trigger transitions defined by the actions {bA, bB} and {uA, uB}. This means
that the Sync channel can transfer data while the FIFO channel is writing data
into its buffer. Thus, our new ACA semantic model resolves the problem of
synchronization of independent concurrent transactions with different durations
manifested by the CA model.

The automaton for the barrier synchronization consists of two states that
represent the situations where all channels in the synchronous region are free
and where all channels are transferring data. The circuit can stay in the second
state for the duration of time needed to finish the data transfer through all five
synchronous channels. However, the model does not show the actual flow of data
within the circuit. Thus, we cannot use this model for computing time delays in
synchronous circuits given delays for its individual channels.

To solve this problem, in addition to the ‘block’ and ‘unblock’ actions, we
introduce ‘start’ and ‘finish’ actions which are used to represent the start and the
end of dataflow through a blocked channel port. Thus, we use the set of action
types T2 = {b, s, f, u}, where b stands for the ‘block’, s for the ‘start’, f for the
‘finish’ and u for the ‘unblock’ action types. The sequence of the aforementioned
four actions is observed on each Reo port. Before the start of each transition,
ports participating in this transition must be blocked. Then, the data transfer

A Semantic Model for Service Composition with Coordination Time Delays 11

starts. After some time t, which represents the delay in the channel, the ‘finish’
action occurs to signal that the data transfer is over. Finally, the ‘unblock’ action
releases the channel port, subsequent to which it can be coopted to perform
another communication. The time between a ‘block’ action and a subsequent
‘start’ action on the same port represents the overhead necessary for the set-up of
the internal coordination before the data transfer can happen. Analogously, the
time between a ‘finish’ and an ‘unblock’ represents the overhead of dismantling
the data transfer set-up. Table 2 shows the semantics of the basic Reo channels
with explicit modeling of internal coordination and dataflow within each channel.
After blocking actions have occurred in the Sync channel, both its ports start to
accept data. This is represented by the simultaneous occurrence of the actions
sA and sB. Similarly, after the data transfer is finished, actions fA and fB
are observed. For the SyncDrain channel, as usual, we require that its ports are
blocked and unblocked simultaneously, while the actual data transfer through
the two ports start and end independently, i.e., all interleavings of action pairs
(sA, fA) and (sB, fB) are allowed. In principle, it is also possible to consider
more restricting versions of the SyncDrain channel where both source ports must
synchronize on starting and/or finishing of their data transfer.

The semantics of the Merger and the Replicator nodes is defined in a simi-
lar way. We assume that, in contrast to channels, the data transfer through a
node is instantaneous, i.e., dataflow starts and finishes at the same time. For
the scenarios where the time for data replication is significant and cannot be
neglected, automata with two different transitions to signal the start and the
end of dataflow should be used.

By synchronizing ‘finish’ actions observed on sink ends with ‘start’ actions
observed on the source ends, we can model sequential flow of data in the syn-
chronous regions. Given two action constraint automata A1 and A2 for each pair
X ∈M1, Y ∈M2 of joint ports, where X is a sink port, and Y is a source port,
the following pairs of actions happen synchronously:

{(act(X, b), act(Y, b)), (act(X,u), act(Y, u)), (act(X, f), act(Y, s))}.

This approach is compliant with the two principles introduced in [4], namely,
that (i) a data-flow in a channel takes place from its input port to its output
port, and (ii) mixed nodes receive and send data instantaneously.

Figure 5 shows the ACA with the set of action types T2 for the delay-merge
circuit obtained as a product of ACA for two channels and the merge node with
an action synchronization function defined by the following set of mappings:

{(bD′′, bD′)→ bD, (uD′′, uD′)→ uD, (fD′′, sD′)→ fD,
(bE′′, bE′)→ bE, (uE′′, uE′)→ uE, (fE′′, sE′)→ fE}.

Observe that, similarly to the previous example, in any state where port C is
occupied (blocked, started to or finished with the transfer of data, but not yet
unblocked), the Sync channel can be involved in an independent communication.

12 N. Kokash, B. Changizi and F. Arbab

Table 2. Semantics of channels and nodes with explicit dataflow

Primitive Dataflow automaton

A B

{bA,bB} {sA,sB} {fA,fB}

{uA,uB}

A B

{bA,bB} {sA,sB} {fA,fB}

{uA,uB}

{bA}{sA}{fA}

{uA}

A B
{bA,bB}

{sA}
{sA,sB}

{sB}

{fA}
{sB}

{fB}
{sA}

{fA}
{fA,fB}

{fB}

{sB}

{fA,sB}

{sA}

{fB,sA}

{fB}

{fA}

{uA,uB}

A B

{bB} {sB} {fB}

{uB}

{bA}{sA}{fA}

{uA}

A B
{bA} {sA} {fA}

{uA}
{bB}{sB}{fB}

{uB}

C
A

B

{bA,bC} {sA,sC,fA,fC}

{uA,uC}

{bB,bC}{sB,sC,fB,fC}

{uB,uC}

A
B

C

{bA,bB,bC} {sA,sB,sC,fA,fB,fC}

{uA,uB,uC}

Figure 6 shows the ACA for the barrier synchronization circuit obtained
using the action synchronization function defined by the following mappings:

{(bH ′′, bH ′)→ bH, (uH ′′, uH ′)→ uH, (fH ′′, sH ′)→ fH,
(bG′, bG′′)→ bG, (uG′, uG′′)→ uG, (fG′, sG′′)→ sG,

(bM ′, bM ′′)→ bM, (uM ′, uM ′′)→ uM, (fM ′, sM ′′)→ sM,
(bN ′, bN ′′)→ bN, (uN ′, uN ′′)→ uN, (fN ′, sN ′′)→ sN,
(bJ ′′, bJ ′)→ bJ, (uJ ′′, uJ ′)→ uJ, (fJ ′′, sJ ′)→ fJ,

(bK ′, bK ′′)→ bK, (uK ′, uL′′)→ uK, (fK ′, sK ′′)→ sK}

and the set of hidden actions

{fH ′, sH ′′, fG′′, sG′, sM ′, fM ′′, sN ′, fN ′′, fJ ′, sJ ′′, sK ′, fK ′′}.

In this model, after blocking all ports, the source ports A and B start to accept
data (either separately or simultaneously). Similarly, labels of further transitions
show on which ports the dataflow starts and finishes. Observe that the end

A Semantic Model for Service Composition with Coordination Time Delays 13

{bC} {sC} {fC} {uC}

{bC} {sC} {fC} {uC}

{bC}

{sC}

{fC}

{uC}

{bC} {sC} {fC} {uC}

{uA, uB, uD} {uA, uB, uD} {uA, uB, uD} {uA, uB, uD} {uA, uB, uD}

{sA, sD′′} {sA, sD′′} {sA, sD′′} {sA, sD′′} {sA, sD′′}

{bA, bB, bD} {bA, bB, bD} {bA, bB, bD} {bA, bB, bD} {bA, bB, bD}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{uA, uB, fC, uD} {uA, uB, fC, uD} {uA, uB, fC, uD} {uA, uB, fC, uD}

{sA, sD′′, bC} {sA, sD′′, bC} {sA, sD′′, bC} {sA, sD′′, bC}

{sC, fA, sB, fB, fD, fD′}

{sC, fA, sB, fB, fD, fD′}

{sC, fA, sB, fB, fD, fD′}

{sC, fA, sB, fB, fD, fD′}

{bE, bB}
{sE′′}{fE, fE′, sB, fB}

{uE, uB}

Fig. 5. Semantics of the delay-merge circuit with explicit dataflow

of dataflow on ports preceding the SyncDrain (external ports A and B, and
internal ports H and J) coincides with the start of the flow on ports following
the SyncDrain (external ports E and F , and internal ports M , N , G and K).
Thus, this model is capable of capturing the stepwise dataflow progress through
synchronous regions.

Among all the states of these automata we may be interested to locate states
in which all channels are idle and free to communicate. Formally, such states are
characterized by the condition ∀A ∈ M, act(A, b) ∈ N [r] ⇒ act(A, u) ∈ N [r],

where N [r] =
⋃
Ni | si

Ni,di−→ si+1 is a set of actions of some automaton run r =

s
N0,d0−→ s1

N1,d1−→ s2
N2,d2−→ s3 Such states correspond to network configurations

defined by the basic CA.

6 Model Analysis and Tool Support

The goal of the introduced semantic model for Reo is to provide a sound math-
ematical basis for the implementation of analysis tools. The set of potentially
useful tools includes but is not limited to converters that generate the automata-
based models given graphical Reo circuits, model checking tools able to verify the
validity of system properties expressed in some kind of formal logic, simulation
engines that allow us to validate and evaluate the performance of a model, and
model-based code and test generation tools. The development of such tools from
scratch is far from trivial and very time consuming. An alternative approach is
to convert our model to a format acceptable by existing analysis tools. To enable
model checking of Reo, we generally rely on the mCRL2 framework.

mCRL2 is a specification language based on the process algebra ACP. The
basic notion in mCRL2 is the action. Actions represent atomic events and can be

14 N. Kokash, B. Changizi and F. Arbab

{sB}
{sB} {sB} {sB}

{fB, fJ, sN, sK, sF}
{fB, fJ, sN, sK, sF} {fB, fJ, sN, sK, sF} {fB, fJ, sN, sK, sF}

{fF}
{fF} {fF} {fF}

{sA}

{sA}

{sA}

{sA}

{fA, fH, sM, sG, sE}

{fA, fH, sM, sG, sE}

{fA, fH, sM, sG, sE}

{fA, fH, sM, sG, sE}

{fE}

{fE}

{fE}

{fE}

{sA, sB} {fA, fH, sM, sG, sE, sB} {sB, fE}

{fB, fJ, sN, sK, sF, sA}
{fB, fJ, fA, fH, sN,
sK, sF, sM, sG, sE} {fB, fJ, fE, sN, sK, sF}

{sA, sF} {fA, fH, fF, sM, sG, sE} {fE, fF}

{bA, bB, bE, bF, bG,
bH, bJ, bK, bM, bN}

{uA, uB, uE, uF, uG,
uH, uJ, uK, uM, uN}

Fig. 6. Semantics of the barrier synchronization circuit with explicit dataflow

parameterized with data. Actions in mCRL2 can be synchronized using the syn-
chronization operator |. Synchronized actions are called multiactions. Processes
are defined by process expressions, which are compositions of actions and mul-
tiactions using a number of operators. The basic operators include (i) deadlock
or inaction δ, (ii) alternative composition p+ q, (iii) sequential composition p · q,
(iv) conditional operator or if-then-else construct c→ p � q where c is a boolean
expression, (v) summation Σd:D p used to quantify over a data domain D, (vi)
at operator a@t indicating that multiaction a happens at time t, (vii) parallel
composition p ‖ q yielding interleavings of the actions in p and q, (viii) encapsu-
lation ∂H(p), where H is a set of action names that are not allowed to occur,
(ix) renaming operator ρR(p), where R is a set of renamings of the form a→ b
and (x) communication operator ΓC(p), where C is a set of communications of
the form a0|...|an 7→ c, which means that every group of actions a0|...|an within
a multiaction is replaced by c. Moreover, the mCRL2 language provides a number
of built-in datatypes (e.g., boolean, natural, integer) with predefined standard
arithmetic operations and a datatype definition mechanism to declare custom
types (called also sorts).

The mCRL2 toolset includes a tool for converting mCRL2 code into a linear
process specification (LPS), which is a compact symbolic representation of LTS
to speed up subsequent manipulations, a tool for generating explicit LTS from
LPS, tools for optimizing and visualizing LTS, and many other useful facilities.
For model checking, system properties are specified as formulae in a variant
of the modal µ-calculus extended with regular expressions, data and time. In
combination with an LPS such a formula is transformed into a parameterized
boolean equation system and can be solved with the appropriate tools from the
toolset. Analysis at the level of LTS, in particular, deadlock detection or checking

A Semantic Model for Service Composition with Coordination Time Delays 15

Table 3. mCRL2 encoding for channels and nodes

Sync = bA|bB · sA|sB · fA|fB · uA|uB · Sync
LossySync = (bA|bB · sA|sB · fA|fB · uA|uB + bA · sA · fA · uA) · LossySync
SyncDrain = bA|bB · (

sA · (sB · (fA · fB + fB · fA + fA|fB) + fA · sB · fB + sB|fA · fB)+
sB · (sA · (fA · fB + fB · fA + fA|fB) + fB · sA · fA + sA|fB · fA)+
sA|sB · (fA · fB + fB · fA + fA|fB)) · uA|uB · SyncDrain

AsyncDrain = (bA · sA · fA · uA + bB · sB · fB · uB) · AsyncDrain
FIFO = isEmpty(f)→ bA · sA · fA · uA · FIFO(full)

� bB · bB · sB · fB · uB · FIFO(empty)

Merger = (bA|bC · sA|sC|fA|fC.uA|uC + bB|bC · sB|sC|fB|fC · uB|uC) ·Merger
Replicator = bA|bB|bC · sA|sB|sC · fA|fC · uA|uC · Replicator

of the presence or absence of certain actions, is also possible. A detailed overview
can be found at the mCRL2 web site2.

We employed the mCRL2 toolset to generate state spaces for graphical Reo
circuits and further model check them. mCRL2 models for Reo circuits are gen-
erated in the following way [7]: observable actions (i.e., dataflow on the channel
ends in the basic CA model) are represented as atomic actions, while data items
observed at these ports are modeled as parameters of these actions. Analogously,
we introduce a process for every node and actions for all channel ends meeting
at the node. A global custom sort Data and the mCRL2 summation operator are
used to model the input data domain and iterate over it while specifying data
constraints imposed by channels.

The availability of the synchronization operator and multications in mCRL2

makes the translation of CA and ACA to the process algebra mCRL2 straight-
forward: we simply synchronize the joint ports in CA and the simultaneously
observed actions in ACA. Table 3 shows the mCRL2 encodings for the basic Reo
channels and nodes according to the semantic model introduced in this paper.
Since data support in the new translation is analogous to the case of the CA-
based translation [7], we omit its discussion here and for simplicity show only
the data-agnostic mapping. Note that the expression for the SyncDrain channel
in the table is equivalent to

SyncDrain = bA|bB · ((sA · fA)||(sB · fB)) · uA|uB · SyncDrain;

However, the use of the parallel operator in mCRL2 is restricted because of the
difficulties to linearize processes where such an operator occurs in the scope of
the sequential, alternative, summation or synchronization operators.

As in the CA approach, we construct nodes compositionally out of the Merger
and the Replicator primitives. Given process definitions for all channels and
nodes, a joint process that models the complete Reo connector is built by form-
ing a parallel composition of these processes and synchronizing the actions for
the coinciding channel/node ends. Optionally, the mCRL2 hiding operator can

2 www.mcrl2.org/

16 N. Kokash, B. Changizi and F. Arbab

be employed for abstracting the flow in internal nodes. Channel/node end syn-
chronization is performed using two of the mCRL2 operators: communication and
encapsulation. For minimizing intermediate state spaces while generating the
mCRL2 specification, we exploit the structure of the circuit and build the process
for the whole Reo connector in a stepwise fashion. In [5], we show that the op-
erational semantics of the mCRL2 specification obtained in this way is equivalent
to the CA semantics of the Reo connector. This result applies to ACA as well.

7 Conclusions

In this paper, we discussed the formal semantic models for the channel-based
coordination language Reo in the presence of coordination and data transfer
delays. We argued that the existing semantic models do not reflect all possible
behaviors in such circuits and are not suitable for the computation of end-to-end
time delays in Reo circuits. To fix these problems, we proposed a more expressive
model, action constraint automata, which represent the behavior of a circuit in
terms of actions observed on its ports. The new model distinguishes transactional
aspects of Reo from dataflow modeling, which is useful for the implementation
of animation and simulation tools for Reo as well as the implementation of Reo-
based service interaction protocols.

The presented work is a first step toward enabling performance analysis for
service compositions and process models specified in Reo. We are going to define
the quantitative version of the ACA and develop algorithms for computing time
delays in the circuits, which are rather straightforward, but are not discussed
here due to space limitation. We also plan to consider circuits with stochastic
delays and develop a theory of quality preserving substitutability of channel-
based connectors.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling Component Connectors in
Reo by Constraint Automata. Science of Computer Programming 61 (2006) 75–113

3. Arbab, F., Chothia, T., Sun, M., Moon, Y.J.: Component connectors with QoS
guarantees. In: Proc. COORDINATION’ 07. Volume 4467 of LNCS., Springer (2007)
286–304

4. Arbab, F., Chothia, T., van der Mei, R., Sun, M., Moon, Y., Verhoef, C.: From
coordination to stochastic models of QoS. In: Proc. Coordination’ 09. Volume 5521
of LNCS., Springer (2009) 268–287

5. Kokash, N., Krause, C., de Vink, E.: Verification of context-dependent channel-
based service models. In: Proc. FMCO 2009. LNCS, Springer (2010)

6. Chothia, T., Kleijn, J.: Q-automata: Modelling the resource usage of concurrent
components, Elsevier (2007) 79–94

7. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service
composition with Reo and mCRL2. In: Proc. of SAC 2010, ACM Press (2010) 2406–
2413

